Red Alert 2 ART.INI Guide	v1.0

By: XGamer

Sections Covered

Global Tags

Infantry

Vehicles and Aircraft

Buildings

Projectiles

Infantry Sequences

Animation Overlays

Debris

The ART.INI file is used to dictate how the game’s graphics are to be drawn on the user’s screen. Most of the game’s graphical data will be located here. Some parts of the ART.INI file can even be used to create extra effects, such as the creation of ore where the animation is played.

The ART.INI file consists of sections, just like the RULES.INI. Each independent object must have its own section. However in ART.INI, the header is much more important – in most cases, this dictates the image file that the object will use. If an infantry’s header is [SOMEGUY], then the game expects to find a file called “someguy.shp” which would contain all the necessary images to draw an infantry unit. In addition, in the RULES.INI, if there is no Image= for an object, it will use the ART.INI entry with the same headers. If there were a unit called [MEGATANK], the game would look for an ART.INI entry called [MEGATANK] to find out how to draw it, which eventually would look for an image file of the same name. However, animation objects in the ART.INI may use a different image by specifying an Image= value.

It’s also a good idea NOT to delete the existing entries, because the game refers to a few of them and may crash if it cannot find those entries.

Global Tags

These tags may be used on all Game objects, excluding animations.

Cameo=

Specifies which SHP file should be used as the cameo (sidebar icon). If the object does not have a cameo, the default “Missing Cameo” icon will be used. Each cameo should be in SHP format using Red Alert 2’s cameo.pal palette. In addition, they should be 60 pixels wide and 48 pixels tall.

AltCameo=

Specifies an alternate SHP file to used in place of the cameo for when the owner has had this type of unit upgrade, because he/she used a spy to infiltrate an enemy barracks or war factory. The same rules apply from Cameo=.

Voxel=

Specifies whether or not the unit’s image file (dictated by its header) is a voxel, and thus the game should treat it differently than a SHP file. Some tags will check this tag first to see if it is set to “yes”.

Remapable=

If this is set to yes, then this tells the game that the unit’s image file (SHP or Voxel) contains special red pixels that may be automatically recolored to the color of the owner of the unit. These special pixels are located in the unittem.pal, the unitsno.pal, and the uniturb.pal. These pixels are index 16 to 31.

Normalized=

Determines whether or not the animations attached to this object should be regulated so that they animate at a constant speed. Normally used on buildings only because Infantry and Vehicles do not usually have extra animations attached to them.

NewTheater=

If this is set to yes, then the game object (usually a building) uses different images based on the theater (i.e. temperate, snow). The game determines which image file to use based on the second character of the objects header. If there is a building called [GARADR], the game will look for the image garadr.shp whenever the building is built on a snowy map, and will use gtradar.shp for temperate maps. Note that an “A” is used for snow images, “U” may be used for urban images and “T” is used for temperate images. In Yuri’s Revenge, a “D” may be used for desert images, and an “L” may be used for lunar images. If the game cannot find a relevant image for a theatre, the game will default to an image with a “G” (for generic) as the second character in the image filename.

ShadowIndex=

Only applies to objects with voxel images, and voxel files with multiple sections. This determines which voxel section will be used to render the shadow of the unit. For example, in a helicopter voxel, it probably has two sections, for the rotors and the main body. ShadowIndex= allows you to make the game draw the shadow based on either the body or the rotors.

DemandLoad=

Can be set to true, or false. If it is set to true, the game will preload the image at the loading screen instead of when it is built. Usually used on civilian buildings.

TurretOffset=

Specifies where the unit’s turret will be placed, along the unit’s centerline. In other words, this says how far backwards or forwards the turret is. This value defaults to 0 (perfect center) and is measured in leptons, with 256 leptons per cell, so if the voxel spans one cell, 256 is its measurement from front to back.

PrimaryFireFLH=

SecondaryFireFLH=

ElitePrimaryFireFLH=

EliteSecondaryFireFLH=

These tags dictate where the projectile will be launched. Basically, this is where the bullet will leave the rifle barrel so to speak. This also determines where the firing animation (if any) defined in the RULES.INI will be displayed. The tags require three values separated by commas, and they are measured in leptons. FLH means forward, lateral, height. A positive value for forward will move the firing location towards the front. A positive value for lateral will move the firing location towards the unit’s right. A positive height value will move the firing location towards the top of the unit. The default for the first two tags is 0,0,0 meaning dead center of the voxel. The last two tags default to same as the first two tags. The last two tags are usually used when the unit gains a different weapon upon reaching elite status. If a weapon has burst=2, then a virtual FLH spot will be chosen for the second projectile. This virtual FLH will be equal to the Primary (or Secondary if the weapon is secondary) F-LH, that is, on the opposite side (left or right) of the vehicle, with the same distance from the centerline as the PrimaryFLH or SecondaryFLH.

WeaponXFLH=

Similar to PrimaryFireFLH=, where X represents a number for each of the weapon. This tag is only used for units with multiple weapons (namely the Prism Tank and the IFV).

(YR) AlternateFLH0=

(YR) AlternateFLH1=

(YR) AlternateFLH2=

(YR) AlternateFLH3=

(YR) AlternateFLH4=

These tags are similar to the other FLH tags. These tags are used only on the Mastermind and the Battle Fortress and are used to show additional firing locations based on special logic. (i.e. different parts of the brain controlling a different unit, the 5 locations where infantry shoot out of a Battle Fortress).

Infantry

Sequence=

Determines which Sequence entry will be used to find the frames needed. A sequence tells which frames are used for firing, which frames are used for walking, etc. Sequence= determines which sequence will be used with infantry’s SHP image. For more information, check out the Infantry Sequences section.

FireUp=

Specifies the frame number of the firing animation, where the primary weapon will actually be fired. It is used to make sure that with a rifle for example, the bullet leaves when you can see the rifle firing, and not before or after (or that would just be wrong). Only applies when the infantry is standing and not lying prone.

(YR) FireProne=

Specifies the frame number of the firing animation, where the primary weapon will actually be fired while prone. It is used to make sure that the projectile leaves the unit when the unit actually fired the gun while lying prone.

(YR) SecondaryFire=

Same as FireUp= except with the secondary weapon.

(YR) SecondaryProne=

Same as FireProne= except with the secondary weapon.

Crawls=

Specifies whether or not the unit is capable of crawling (including lying prone). The infantry’s sequence must support crawling frames.

Vehicles and Aircraft

WalkFrames=

Specifies the number of frames per direction that this SHP vehicle has. It is assumed that all the directional animations are present. These will be used whenever the SHP vehicle moves.

FiringFrames=

Specifies the number of frames per direction that this SHP vehicle has. It is assumed that all the directional animations are present. These will be used whenever the SHP vehicle attacks.

Trailer=

This tag specifies which animation will be used as a trailer. Whenever the unit moves, the first animation will be shown closest to the unit, and the next frame will be a bit further, and the next frame would be still further, until there are no more frames left. This tag can be used on flying vehicles, including JumpJet units and AircraftTypes. This tag can also be used on vehicles that spawn flying vehicles or aircraft (namely the V3 Launcher).

SpawnDelay=

Sets how close to each other that each trailer frame is. It actually specifies the number of frames before the next trailer frame is drawn. Smaller numbers mean closer trailers and generally a cooler effect, but results in lowered game speed.

SecondarySpawnOffset=

Specifies a second location where another spawned object will appear. This is only used on Yuri’s Boomer Sub to get it to show a second missile coming out, instead of having them overlap.

UseLineTrail=

Makes the game draw a line that follows the path of the attached object, like a trailer. It follows the same restrictions that Trailer= uses. It requires that both LineTrailColor= and LineTrailColorDecrement= are present and that they both have valid values.

LineTrailColor=

Specifies the RGB value of the Line Trail (if it has one).

LineTrailColorDecrement=

Specifies how long the Line Trail (if it has one) should be. Longer values mean a longer Line Trail.

Idle2Sounds=

Die1Sounds=

Die2Sounds=

WalkSounds=

CrawlSounds=

Special extra sounds which apply to infantry. The tags use entries from Sound.ini. It is not known what the number preceding the sound is used for.

Buildings

Foundation=

Determines how big the building is, and thus how many cells it occupies. It uses the format “width x length”, where width is the size of the building on the South East or North West side, and length is the size of the building on the South West or North East side.

Height=

Specifies how tall the building is (measured in cells). This is used to determine how high to draw the white box when the user selects the building, and how high a Kirov Airship, Rocketeer, or another air unit will rise to clear the obstacle in their way (the building).

Buildup=

Determines which SHP image will be used as the animation for when the building is placed on the ground. When the building is sold, it will use the reverse of this animation. This animation should be less than 100 frames or so, and each build able building must have a Buildup=, or else you will never be able to sell it. If you don’t have a buildup, just use a short animation as a temporary buildup.

DemandLoadBuildup=

Can be set to “true” or “false”. The function of this tag is unknown. It is usually set to true, however.

FreeBuildup=

Can be set to “true” or “false”. The function of this tag is unknown. It is usually set to true, however.

Recoilless=

If it is set to yes, it tells the game that the building does not use a weapon or turret that recoils, and that it should adjust accordingly.

ToOverlay=

Specifies which overlay that the building will be converted to. Usually used for allowing the player to make walls and pavement.

DamageLevels=

Specifies the number of damage levels a wall’s SHP file has, where each damage level is a whole set of wall images with increasing damage.

PowerUp1Anim=

PowerUp2Anim=

PowerUp3Anim=

Specifies which animation to add to a building when the building is powered up 1, 2, or 3 times.

PowerUp1AnimDamaged=

PowerUp2AnimDamaged=

PowerUp3AnimDamaged=

Same as above except it is used when the building itself is damaged to 50% health or lower.

PowerUp1LocX=

PowerUp2LocX=

PowerUp3LocX=

Specifies the x pixel offset from the buildings draw location where the upgrade module will be drawn. A building’s draw location is at the upper left corner of the building’s SHP image.

PowerUp1LocY=

PowerUp2LocY=

PowerUp3LocY=

Same as above except for the y pixel offset.

PowerUp1YSort=

PowerUp2YSort=

PowerUp3YSort=

Creates an order of how the upgrade modules should be drawn. The upgrade module with the lowest value will be drawn behind the other upgrade modules AND animations if they overlap. These tags relate with ActiveAnimYSort to see which Animation or Upgrade Module gets rendered on top of other animations or upgrade modules.

ActiveAnim=

ActiveAnimTwo=

ActiveAnimThree=

Specifies an animation that will be played when the building is up and running just fine with minor or no damage.

ActiveAnimDamaged=

ActiveAnimTwoDamaged=

ActiveAnimThreeDamaged=

Specifies an animation that will be played when the building is running, but with less than 50% health.

ActiveAnimX=

ActiveAnimTwoX=

ActiveAnimThreeX=

Specifies the X coordinate from the building draw position. Defaults to 0. Not used in RA2, as most building’s active animations are the same size as the building.

ActiveAnimY=

ActiveAnimTwoY=

ActiveAnimThreeY=

Like ActiveAnimX=, except that it specifies the Y coordinate.

ActiveAnimYSort=

ActiveAnimTwoYSort=

ActiveAnimThreeYSort=

Creates an order of how active anims should be drawn. The active anim with the lower value will be drawn behind other ActiveAnims or PowerUps with a higher YSort value. Its just like PowerUp1YSort=.

ActiveAnimZAdjust=

ActiveAnimTwoZAdjust=

ActiveAnimThreeZAdjust=

Adjusts the Z value of the animation. Defaults to 0. The z value of the ActiveAnim determines whether the active anim will be played on top, another image, below another image, or between two images. The lowest value means “behind all other images” while the highest z value mean “in front of all images”.

ActiveAnimPowered=

ActiveAnimTwoPowered=

ActiveAnimThreePowered=

If it is set to yes, then the ActiveAnim will only be played when the owner of the building has sufficient power to run the building. If not, the active anim will stop playing and be frozen at the last frame that was played before the power was cut off.

SpecialAnim=

SpecialAnimTwo=

SpecialAnimThree=

SpecialAnimDamaged=

SpecialAnimTwoDamaged=

SpecialAnimThreeDamaged=

SpecialAnimZAdjust=

SpecialAnimTwoZAdjust=

SpecialAnimThreeZAdjust=

SpecialAnimX=

SpecialAnimTwoX=

SpecialAnimThreeX=

SpecialAnimY=

SpecialAnimTwoY=

SpecialAnimThreeY=

SpecialAnimYSort=

SpecialAnimTwoYSort=

SpecialAnimThreeYSort=

These tags are just like ActiveAnims, except these are used when the Building performs a special function, and thus they are not active all the time, only when they are needed.

ProductionAnim=

ProductionAnimDamaged=

ProductionAnimZAdjust=

ProductionAnimYSort=

ProductionAnimX=

ProductionAnimY=

Again, these tags function exactly like ActiveAnims, except that these are used whenever a building owned by the same owner of this building is placed, and built. Only used on the Construction Yard.

SuperAnim=

SuperAnimDamaged=

SuperAnimZAdjust=

SuperAnimYSort=

SuperAnimX=

SuperAnimY=

Yet again, these tags function exactly like ActiveAnims, except that these are used whenever a superweapon belonging to the building is activated.

PrimaryFirePixelOffset=

SecondaryFirePixelOffset=

Dictates where the weapon will shoot. It is different than PrimaryFireFLH in that it uses pixels, and not leptons. Usually used when the building has no turret. The first value is the x value from the center of the image, and the second value is the y value. It defaults to 0,0 and no matter the direction that the weapon is firing, it will always shoot from that location, unlike PrimaryFireFLH which takes into account the movement of the firing location.

PrimaryFireDualOffset=

When set to true, this means that the building uses both PrimaryFirePixelOffset and PrimaryFireFLH. This allows the building to use PrimaryFirePixelOffset to determine where 0,0,0 (from PrimarFireFLH) is located, instead of dead center. This can be used quite effectively to make a non-symmetrical building look like it has a turret when in fact it does not.

QueueingCell=

Specifies the X, and Y coordinates (in that order) of the cell where an ore miner will wait while another ore miner dumps its load into the refinery. It starts counting from the west corner of the building, moving northeast when the X value increases, and moving southeast when the Y value increases.

BibShape=

Specifies the image to be used as a “Bib”. A Bib is a part of the building where a unit may traverse over it. This makes the game draw the unit over the bib and not under.

DockingOffset0=

DockingOffset1=

DockingOffset2=

DockingOffset3=

The three values mean the x (increasing means towards northeast), y (increasing means towards southeast), and z (increasing means higher)) coordinates (in that order). The Docking Offsets are based off the center of the building’s bib if it has one, or the building itself. The values are measured in leptons, where each cell is 256 leptons cubed.

DamageFireOffset0=

DamageFireOffset1=

DamageFireOffset2=

DamageFireOffset3=

Specifies where the fire animations will be played on the building that is damaged to 50% health or less. If it is omitted, then no fire animation will be played. The values are in pixels, x first then y, and they start counting at the center of the SHP image.

IsAnimDelayedFire=

If set to yes, then when the building has designated a target to shoot at because it is within range of its weapon, it will wait a bit before actually firing. The tag below controls this wait time.

DelayedFireDelay=

Specifies the time in frames (where the game is about 15 fps on medium) to hold back on the firing of a weapon. This is used to synchronise the firing animation of buildings with the actual firing of the weapon.

TerrainPalette=

If it is set to yes, the building should be drawn using the terrain palettes isotem.pal, isourb.pal, and isosno.pal. In Yuri’s Revenge, this would also include isodes.pal, and isolun.pal. This was only used in Tiberian Sun.

CanHideThings=

Can be set to true or false. Specifies whether or not the game will automatically designate cells where a unit is considered “hidden” and will display a hidden animation.

AddOccupy1=

AddOccupy2=

AddOccupy3=

AddOccupy4=

Specifies addition cells where a unit is designated as hidden, and a hidden animation will be shown on the top layer. Its in the form as on x and y offset starting from the buildings offset position (unknown).

RemoveOccupy1=

RemoveOccupy2=

RemoveOccupy3=

RemoveOccupy4=

Overrides the cells designated by CanHideThings=. Units would be able to occupy this cell without having the “hidden” animation being played. Its in the form as on x and y offset starting from the buildings offset position (unknown).

CanBeHidden=

Specifies whether or not this building can be hidden by other taller buildings in front of it. Can be set to true or false.

OccupyHeight=

Specifies how tall an OccupyCell (specified by AddOccupy and CanHideThings=) is. A rocketeer floating in an OccupyCell that is below OccupyHeight will be considered hidden, while it if is flying above, it will not be considered as hidden.

(YR) DoubleThick=

If it is set to true, then the building or animation will be made extra translucent when it is being attacked by the Chrono Legionnaire. This is used when a building has two or more layers and one translucent layer will not be enough.

Projectiles

Trailer=

This tag specifies which animation will be used as a trailer. Whenever the voxel projectile moves, the first animation will be shown closest to the voxel projectile, and the next frame will be a bit further, and the next frame would be still further, until there are no more frames left. This tag can be used on voxel projectiles.

SpawnDelay=

Sets how close to each other that each frame is. It actually specifies the number of frames before the next trailer frame is drawn. Smaller numbers mean closer trailers and generally a cooler effect, but results in lowered game speed.

UseLineTrail=

Makes the game draw a line that follows the path of the attached object, like a trailer. It follows the same restrictions that Trailer= uses. It requires that both LineTrailColor= and LineTrailColorDecrement= are present and that they both have valid values.

LineTrailColor=

Specifies the RGB value of the Line Trail (if it has one).

LineTrailColorDecrement=

Specifies how long the Line Trail (if it has one) should be. Longer values mean a longer Line Trail. Here’s a theory - The fading color may be split into 16 sections, and that this tag may dictate how long each of these sections are, thus lengthening or shortening based on this tag.

Rotates=

If it is set to yes, this tells the game that it uses a SHP image that has 64 frames, and that the frames show a projectile rotating 360°. This will allow the game to show the correct frame of the missile moving in its direction.

AnimPalette=

If it is set to yes, the game will draw the SHP image using the anim.pal palette, instead of the unittem.pal, unitsno.pal or uniturb.pal palettes.

Voxel=

If it is set to yes, then the image of the projectile is a Voxel, and not a SHP.

Flat=

If it is set to yes, it will be drawn when the game draws the ground layer, and then other objects will be drawn over it. This will let the projectile move under other units.

Infantry Sequences

Infantry Sequences tell the game which frame in an Infantry’s SHP file should be used for what purpose. Each tag has 3 or 4 possible values:

The first number is the starting frame for that particular action. Note that RA2 counts the SHP frames starting from 0, so the first frame is considered 0 by RA2.

The second number is the number of frames to be used, including the starting frame.

The third number is complex. It says how to get to the starting frame of a particular direction for that action. Starting with the Starting frame, the game will multiply the facing number (which is 0 for facing “up” and moving counter-clockwise increases the number by one) by the third number to reach the starting frame of the facing direction. This is used to get Prone frames without having to draw them and add new frames. I’ll give an example:

Conscript

Crawl=86,6,6

The game will start a 86, and use the six frames including frame #87 for facing north, calculate the frame number of the next direction, and then use the next 6 frames from there, and so on.

Prone=86,1,6

Here, the game will only take the first frame (#87), and then calculate the frame number of the next direction, and use that frame for the next direction.

The fourth value is a North, South, East, West, system on a compass rose. The game’s directions are different than yours. The game considers north to be in the top left of your screen. Basically the game’s compass is rotated 45° clockwise. The fourth value is only used on the Idle1=, Idle2=, WetIdle1=, WetIdle2=, and Cheer= tags.

Here are the valid action tags:

Ready=

Used when the infantry unit is just standing there idle.

Guard=

Used when the infantry unit is set to guard mode. This doesn’t seem to be used much by RA2.

Tread=

Specifies frames used when an infantry unit is swimming in the water, and is treading to keep itself above the surface of the water.

Prone=

Specifies all the frames the infantry unit uses while lying on the ground (to reduce damage taken).

Walk=

Specifies frames used when the infantry walks.

Swim=

Specifies frames used when the infantry unit is swimming in the water.

FireUp=

Specifies frames used when the infantry unit is standing and firing at an enemy unit.

WetAttack=

Specifies frames used when the infantry unit is swimming in the water and firing at an enemy unit.

Down=

Specifies frames used when the infantry unit drops to the ground when it is going from standing to prone.

Crawl=

Specifies frames used when the infantry unit is crawling. That’s when a unit is taking fire but is told to move.

Up=

The Opposite of down=. Specifies frames for when the infantry unit is getting up after the danger has passed.

FireProne=

Specifies frames used when an infantry is prone and returning fire.

Idle1=

Idle2=

Specifies frames used when an infantry unit is standing around. This makes it look less like a statue when idle.

WetIdle1=

WetIdle2=

Specifies frames used when an infantry unit is swimming in the water. This makes it look less like a statue when idle.

Die1=

Specifies frames used when an infantry unit is killed by a weapon with a warhead that has InfDeath=1.

Die2=

Specifies frames used when an infantry unit is killed by a weapon with a warhead that has InfDeath=2. This may be randomly chosen between Die2= and Die3=.

Die3=

Specifies frames used when an infantry unit is killed by a weapon with a warhead that has InfDeath=1. This may be randomly chosen between Die3= and Die2=.

Die4=

Specifies frames used when an infantry unit is killed by a weapon with a warhead that has InfDeath=3.

Die5=

Specifies frames used when an infantry unit is killed by a weapon with a warhead that has InfDeath=4.

WetDie1=

Specifies frames used when an infantry unit is killed while swimming in the water. It’s randomly chosen between WetDie1= and WetDie2=.

WetDie2=

Specifies frames used when an infantry unit is killed while swimming in the water. It’s randomly chosen between WetDie2= and WetDie1=.

Deploy=

Specifies frames used when an infantry unit is ordered to “deploy” and thus activate some function (like the GI placing sandbags and mounting a machine gun).

Deployed=

Specifies frames used when an infantry unit is deployed and currently doing nothing.

Undeploy=

Specifies frames used when an infantry unit is order to “undeploy”.

Cheer=

Specifies frames used when an infantry unit cheers.

Paradrop=

Specifies a frame used when an infantry unit is being paradropped onto the battlefield. This frame should NOT have a shadow in the frame.

Fly=

Similar to walk= except that it is only used by flying infantry (e.g. Rocketeer).

Hover=

Specifies frames used when a flying infantry unit is hovering in midair, idling.

FireFly=

Specifies frames used when a flying infantry unit is shooting at something. Similar to FireUp=

Tumble=

Specifies frames used when a flying infantry unit is shot down. May not be used in favor of AirDeathStart=, AirDeathFalling=, and AirDeathFinish=.

AirDeathStart=

Specifies frames used when a flying infantry unit is killed, and begins falling.

AirDeathFalling=

Specifies frames used when a flying infantry unit is falling from the sky.

AirDeathFinish=

Specifies frames used when a flying infantry unit hits the ground after falling from the sky.

(YR) SecondaryFire=

Same as FireUp=, except it is used when the secondary weapon is fired.

(YR) SecondaryProne=

Same as FireProne=, except it is used when the secondary weapon is fire, while prone.

Animation Overlays

These are animations that are played over everything else. These contain things such as fire, explosions, etc.

Scorch=

If it is set to yes, the animation will leave a scorch mark (burn “smudge”) on the battlefield, purely as a graphical effect.

Crater=

If it is set to yes, the animation will leave a crater (smudge) on the battlefield as a graphical effect.

ForceBigCraters=

If it is set to yes, the largest crater smudge will be place in the same cell that the animation is played on. The best example of this is the Nuke. It leaves a large crater on the ground if there isn’t already one there.

PsiWarning=

If it is set to yes, the animation will be played for a player if the player has a psychic sensor, and a nuke has been fired.

Sticky=

If it is set to yes, the animation will stay at its location and will never move.

Flat=

Tells the game to draw it on the ground beneath other objects such as buildings and units.

Translucent=

If it is set to yes, it tells the game that the unit is to be see-through.

Translucency=

Specifies how translucent the animation is. Values of 25, 50, or 75 can be used and they mean 25%, 50%, or 75% percent translucent (more means more translucent).

Damage=

Specifies the amount of damage to be applied to objects occupying the same cell as the animation occupies. The damage is applied over a one-minute period.

Report=

Specifies the sound to play when the animation is played. The sound should match the entry in the audio.idx (which in turn will match the sound with the actual sound file in audio.bag).

Next=

Specifies an animation to play when the current animation has stopped playing. This includes after its been looped a few times.

SpawnsParticle=

Specifies a particle (from the Rules.ini) that will be spawned by the animation. This is currently only used by the Virus Death animation, to get the poisonous gas to appear after a unit is killed by the Virus.

NumParticles=

Specifies the number of particles (specified by SpawnsParticle= above) that are spawned by the animation. Again, only used by the Virus Death animation

DetailLevel=

Supposedly specifies the amount of detail to display the image. No effect has been observed at this time.

UseNormalLight=

If it is set to yes, then the animation is always played at 100% brightness (even while the screen is darkened because of the Lightning Storm superweapon).

YSortAdjust=

Specifies a YSort value so that the animation can appear behind a unit (like the Chrono Legionnaire’s warping in image), or in front of a unit (like the Chronosphere activation).

ZSortAdjust=

Specifies a ZSort value so that the animation can appear behind a building or in front of a building.

AltPalette=

If it is set to yes, then the animation will be drawn using the unittem.pal, unitsno.pal, and uniturb.pal palettes instead of the anim.pal palette.

Rate=

Determines how fast or slow the animation should be played. Higher values means faster. The value is based on the number of animation frames that would play within 900 game frames. A rate of 300 would give 900/300 or 3 game frames between each of the animation’s frames.

Layer=

Determines which layer the animation should be played on. “Top” means above everything else (including the shroud – try firing the Lightning Storm into the shroud). “Ground” means the battlefield.

Start=

Specifies the frame to start playing the animation. Starts at 0.

LoopStart=

Specifies the starting frame of a loop. This can be different then Start=. The game will just start at the Start= value then play until it hits LoopEnd=, then it will start playing from LoopStart=.

LoopEnd=

Specifies the ending frame of a loop. If it has not reached LoopCount=, then it will go to LoopStart= and start playing again.

LoopCount=

Specifies how many times the animation is to be played. A loop starts with a Loop Count of 0. When it hits LoopEnd= it will increase the Loop Count by 1, and check it with LoopCount= to see if it can still loop. If LoopCount= is set to –1 however, it will never end because it will never reach –1.

Debris

The Debris includes things such as Meteors (from TS), and the debris given off by buildings when destroyed. Their parameters are controlled here. These work just like the Voxel debris in RULES.INI

Elasticity=

Specifies a coefficient that determines how bouncy this debris object is. Higher values means more bouncy. Bouncer= must be set to yes if you set Elasticity=.

MaxXYVel=

Specifies how fast the debris can possibly be moving on the XY plane (sideways, and forwards/backwards).

MaxZVel=

Specifies how fast the debris can possibly be moving upwards (like when it is initially ejected).

ExpireAnim=

Specifies the animation (defined in the ART.INI) that will be played when the debris impacts with the ground.

Damage=

Specifies the amount of damage that will be applied to objects near where the debris impacted.

DamageRadius=

Specifies how far (in leptons) to apply damage in a radius around the impact point.

Warhead=

Specifies a warhead (defined in RULES.INI) that will be used to correctly apply the damage to different surfaces.

IsMeteor=

If it is set to true, the animation will come flying from high above (rather than being ejected) until it impacts with where its calculated impact point.

Spawns=

Specifies another debris objects that will be created an ejected when this debris object impacts with the ground.

SpawnCount=

Specifies the number of Spawn= to create an eject when the debris object impacts with the ground.

LoopStart=

LoopEnd=

LoopCount=

Same as the Animation Overlay tags.

TrailerAnim=

Same as the Trailer= tag.

TrailerSeperation=

Same as the SpawnDelay= tag.

Bouncer=

If it is set to yes, the debris will bounce off the ground after it impacts. The degree to which it will bounce is controlled by Elasticity=.

RandomRate=

This tag holds two values. These specify the range at which a random Rate= will be generated. This makes the debris spin (because its animation is of the debris spinning) at a random speed each time the debris is generated.

TiberiumSpawnType=

Can be used to spawn ore where it impacted. Usually only TIB01 is used (meaning ore).

TiberiumSpawnRadius=

Specifies how far to spawn ore if it even spawns any ore at all.

Unknown

Here is the list of tags with unknown functions:

ShouldUseCellDrawer=

ShouldFogRemove=

ZShapePointMove=

DisableVoxelCache=

DisableShadowCache=

Credits

Proofreaders

ComradeJ – commented on the way that FLH works with Burst=2 weapons

Renegade – also commented on the way that FLH works with Burst=2 weapons, and for pointing out a few problems. Also pointed out several missing tags, as well as several tags with unknown functions.

None – pointed out the missing AlternateFLH tags and that they were used on the Mastermind, not the Magnetron that I originally had it as.

Psycho – pointed out that SuperAnim tags were missing from the guide

Other

DeeZire, for his Rules.ini Guide, with which this Art.ini guide is based on, and for the first bits of his own unfinished Art.ini.

